
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

Application of RSA Cryptosystem and Linear 

Congruential Generator to Enhance Security in JSON 

Web Tokens for Storing User's Credentials 

Nayaka Ghana Subrata - 135230901  

Program Studi Teknik Informatika  

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  
113523090@mahasiswa.itb.ac.id, nayakaghana39@gmail.com  

 

 

 

Abstract— With the vast development of technology, the internet 

has become an essential part of human life and its basic needs. One 

of its purposes is to develop and access websites or web-based 

applications. However, sensitive and confidential information 

needs to be secured, which led to the introduction of JSON Web 

Tokens (JWT). Nevertheless, JWT has many weaknesses and 

variations, and if not implemented correctly, the security of data 

stored using JWT can be compromised. Therefore, an effectively 

modified hashing algorithm is needed to enhance the security of 

JWT. This paper introduces a solution to that problem, investigates 

the theory behind hash and JSON Web Token and its 

implementation with RSA and LCG in the encryption and 

decryption process. Experimental results demonstrate the server 

encrypting and decrypting the credentials using JWT, showcasing 

the algorithm used in this paper. 

 

Keywords—RSA, LCG, JWT, Hashing algorithm  

 

 

I.   INTRODUCTION 

With the vast developments of technology, the internet has 

become a crucial part of human life and its basic needs. One of 

its uses is to develop and access websites or web-based 

applications. The web roles as a media to exchange user’s 

information and data with the server. However, sensitive and 

confidential information need to be secured, so there is an urgent 

need for systems that can securely store data in a way that is 

resistant to breaches and unauthorized access. 

To face this challenge, the concept of JSON Web Tokens 

(JWT) is introduced. JWT uses various hash algorithms to store 

information in an encoded string that contains data wrapped in 

JSON format. However, certain hashing algorithms have been 

shown to be vulnerable, making it easier to compromise the 

security of the stored data. This vulnerability increases the need 

for stronger algorithms to ensure the confidentiality and 

integrity of server-side data. 

To solve these issues, the writer proposes an approach that 

integrates RSA (Rivest-Shamir-Adleman) encryption and the 

Linear Congruential Generator (LCG) into the JWT mechanism. 

The implementation of RSA aims to enhance the encryption 

effectiveness, making it more difficult to breach. Meanwhile, 

LCG is integrated to generate random codes (salts) that can be 

used for padding data within JWTs. This combination used to 

enhance the overall security of JWTs by utilizing both RSA and 

LCG. 

This paper also discusses the design and implementation of 

the modified JWT system, exploring how RSA and LCG are 

incorporated into the existing JWT framework. Furthermore, the 

outcomes of this implementation will be analyzed to 

demonstrate its effectiveness in addressing the security 

vulnerabilities inherent in conventional JWT mechanisms. 

This paper aims to provide a comprehensive exploration of 

the application of Rivest-Shamir-Adleman (RSA) algorithm and 

Linear Congruential Generator (LCG) to enhance the 

effectiveness of JSON Web Token (JWT) hashing algorithm.  

The paper has been organized as follows: this section 

provides the overview and the introduction, Section 2 provides 

the theoretical framework, Section 3 provides the hashing 

scheme, Section 4 provides the implementation, Section 5 

provides the test and the result, and Section 6 provides the 

conclusion followed by references. 

 

II.  THEORETICAL FRAMEWORK 

A. Cryptosystem 

Cryptosystem is an entire set of cryptographic systems needed 

necessary for the provision of a certain security services, such 

as data confidentiality and hiding data’s crucial information 

(encryption-decryption process). This can also be defined as 

converting plaintext to ciphertext to encrypt and decrypt 

message securely.  

In general, cryptosystem consists of three main algorithms: 

key generation, encryption, and decryption. The basic model of 

cryptosystem is depicted in the figure below: 

 
Fig. 2.1 Basic cryptosystem model  

(Source: Adapted from [3]) 

 

Typically, there are two kinds of cryptosystems based on its 

mailto:113523090@mahasiswa.itb.ac.id.com
mailto:nayakaghana39@gmail.comid


Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

key-generation process; the first kind of the cryptosystem is 

symmetric key cryptography, and the second kind of the 

cryptosystem is asymmetric key cryptography. Symmetric key 

cryptography is a cryptography process that uses same keys for 

encryption and decryption process. A well-known example that 

uses this cryptosystem are Advanced Encryption Standard 

(AES), Data Encryption Standard (DES), International Data 

Encryption Algorithm (IDEA), Blowfish, and Rivest Cipher. 

Example for this encryption can be seen in Fig 2.2. 

 
Fig. 2.2 Basic symmetric key cryptography model  

(Source: Adapted from [1]) 

 

Asymmetric key cryptography is a cryptography process that 

uses different keys for encryption and decryption process. A 

well-known example that uses this cryptosystem are Rivest-

Shamir-Adleman (RSA), Elliptic Curve Cryptography (ECC), 

Digital Signature Algorithm (DSA), Diffie-Hellman, and 

Certificate Authorities (CAs). Example for this encryption can 

be seen in Fig 2.3. 

 
Fig. 2.3 Basic asymmetric key cryptography model  

(Source: Adapted from [2]) 

 

B. Hash Functions 

Hash function uses mathematical functions to take various 

inputs (or we can call it variables), then converting the inputs to 

fixed-length data. Hash divided into three parts: keys, functions, 

and hash tables. Keys is the user input, or the data given to the 

hash system, functions is the hash algorithm functions to convert 

the keys into its tables, and the tables is to store the hashed 

values in a table so we can track the outputted value and prevent 

the hash collision. The process of hashing some data can be seen 

in Fig 2.4. 

 
Fig. 2.4 Hash Algorithms  

(Source: Adapted from [5]) 

 

 

There are many types of hash functions, the first one is 

Message Digest (MD), this function is often used to ensure the 

integrity of the transferred files. The second one is Secure Hash 

Functions (SHA), this function is often used in applications or 

network protocols (for example, Secure Socket Layer / SSL). 

The third one is Cyclic Redundancy Check (CRC), this function 

is often used for detecting errors in a data transfer process. 

 

C. Rivest-Shamir-Adleman 

Rivest-Shamir-Adleman (RSA) algorithm is one of the 

cryptosystems that uses asymmetric key to encrypt and decrypt 

the plaintext and the ciphertext. This algorithm is named after 

its founder: Ron Rivest, Adi Shamir, and Len Adleman in 

1977. 

 
Fig 2.5 (From left to right) Adi Shamir, Ron Rivest, and Len 

Adleman  

(Source: Adapted from [4]) 

 

a. Encryption 

The encryption process of this algorithm is quite simple, first 

pick two primes, or namely p and q. The size of this primes is 

freely chosen, but it’s recommended to pick big primes to make 

the decryption process more challenging and difficult. 

After picking the two primes number (p and q), we can 

calculate the modulus for the encryption, or namely N. The N 

value can be calculated using the equations below:  

 

𝑁 = 𝑝𝑞 … (1) 

 

With N is the modulus value, and pq is the product of the two 

primes number. Notice that, if we choose big size of integer for 

the p and q values, the N size is increased significantly too.  

After we calculate N value, the next step is to pick the public 

exponent or sometimes called the encryption key value (e 

value). In general, we can pick 65537 (or 0x10001 in 

hexadecimal representation) to be the public exponent. This 

value picked because of its common compromise between being 



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

high, and its cost of raising to the e-th power. But keep in mind 

that the e value must be coprime with the Euler’s totient value 

that usually represent in phi (𝜑) symbol (this totient value will 

be discussed in the decryption part).  

The final step of the RSA encryption process is to convert 

plaintext to ciphertext, or namely c. To calculate the c value, we 

must understand what number theory and modular arithmetic is. 

The c value can be calculated using the equations below: 

 

𝑐 = 𝑚𝑒  𝑚𝑜𝑑 𝑁 … (2) 

 

With m is the plaintext representation in its integer value. 

After we calculate the c value, we can share the N, e, and c value 

to the receiver. 

 

a. Decryption 

The decryption process of this algorithm is quite challenging, 

first, we have to search for prime factors from N value (see eq. 

(1)), if the encryption process is using conventional RSA, we 

can use Pollard’s Rho algorithm to search for the prime factors 

from N (or we’re searching for p and q values). The algorithm 

can be seen in Fig 2.6. 

 
Fig 2.6 Pollard’s Rho algorithm  

(Source: Writer’s archive) 

 

After getting the p and q values, calculate the Euler’s totient, 

Euler’s totient is a function to determine how much numbers are 

coprime relative to the N value (or suppose that the number is k, 

1 ≤ 𝑘 ≤ 𝑁, greatest common divisor of k and N must be equal to 

1). Euler’s totient is multiplicative function, meaning that if we 

have two coprime numbers, for example a and b, then:  

 

𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) … (3) 

 

If n-set of numbers ({𝑎1, 𝑎2, … , 𝑎𝑛}) are pair-wisely coprime, 

then: 

 

𝜑 (∏ 𝑎𝑖

𝑛

𝑖=1

) = ∏ 𝜑(𝑎𝑖)

𝑛

𝑖=1

… (4) 

 

From eq. (3), if b is a prime number, then 𝜑(𝑏) = 𝑏 − 1. Notice 

that a and b are different prime numbers because a and b is 

coprime. From these results, we can get:  

 

𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) 𝜑(𝑎𝑏) = (𝑎 − 1) (𝑏 −1) … (5) 

 

With 𝜑(𝑎𝑏) is the Euler's totient value that we’ll use to 

calculate the private key. After calculating the Euler’s totient 

value, we can calculate the private key value, namely d. To 

calculate d, we will use the equivalencies below:  

 

𝑑 ≡ 𝑒 −1 𝑚𝑜𝑑 (𝜑(𝑁)) … (6) 

 

From eq. (6), calculate d using modular inverse concept, after 

we get the d value, we can convert ciphertext to its plaintext 

using this equation below: 

 

𝑚 = 𝑐𝑑  𝑚𝑜𝑑 𝑁 … (7) 

 

With c is the ciphertext representation in its integer value. 

After we calculate the m value, convert it to its string value to 

get the plaintext. 

 

D. Linear-Congruential Generator (LCG) 

Before we start to discuss Linear Congruential Generator, 

first we have to know the recursive concept and the number 

theory. Linear Congruential Generator uses recursive functions 

to generate the random number, so it will be explained below. 

Recursive functions are a function that always call itself until 

its reaching its basis. The idea of this concept is to solve 

problems by breaking it to smaller problem, so we can find 

similar problems related to it and it makes more easier to 

working with. 

There are two parts of recursive functions, the first part is the 

basis. Basis is the base case of the problems, making the 

recursive function stops when it reaches the basis conditions. 

The second part is the recurrence, the recurrence is the steps 

needed to solve the problems, the recurrence will define itself 

until it meets the basis. 

Problems that use this concept for example linear 

congruential generator, tree, greatest common divisor, 

Fibonacci, and fractal image. 

 
Fig 2.7 Fractal Geometry  

(Source: Adapted from [https://www.researchgate.net/figure/Nine-

well-known-fractal-geometries-a-tree-b-seahorse-c-fern-leaf-d-

h_fig2_370681485]) 

 

 

With recursive approach, we can generate random number 



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

using linear congruential generator (LCG). LCG is an algorithm 

to generate random pseudo number. The equation of lcg can be 

defined in equations below: 

 

𝑋𝑛 = (𝑎𝑋𝑛−1 + 𝑐) 𝑚𝑜𝑑 𝑚 … (8) 

 

From eq. (8), a is the multiplier factor, c is increment, m is 

modulus, and 𝑋𝑛 is the n-th random pseudo number. Before we 

start, we have to define its seed first (𝑋0) so the recursive can 

meet the basis and stop when it reaches the basis. 

 

D. JSON Web Token (JWT) 

JSON Web Tokens (JWT) are compact, URL-safe tokens 

used for securely transmitting information between parties as a 

JSON object. They are commonly used for authentication and 

information exchange[6]. The token is mainly composed of 

header, payload, and signature which each part is separated by 

dots (‘.’). 

The header part is commonly used to describe the 

cryptosystem applied to JSON Web Token and contains the data 

of content that we are likely to send. The next parts are the 

payload part. The payload is the part where all of user’s data is 

added, this part commonly stored the user’s data such as 

credentials but take a note that the information is readable by 

anyone so we must carefully store the data in the JWTs. The last 

part is signature part. This part is to verify if the authenticity of 

the token is valid, so only the authored one can access using this 

token. 

 
Fig 2.8 Decrypted JWT Structure  

(Source: Adapted from [7]) 

 

In this case, the paper will use one of the JWT hash algorithm, 

that is RS-256. RS-256 is an asymmetric algorithm that uses 

public and private key to hash the JWTs. The identity provider 

has the private key to create the signature. The JWT recipient 

uses the public key to validate the JWT signature. The public 

key used to verify, and the private key used to sign the token are 

related because they are created as a pair. 

 
Fig 2.9 RS256 Algorithm  

(Source: Adapted from [6]) 

III.   IMPLEMENTATION 

This program is developed using Python as its primary 

programming language due to its simplicity and versatility in 

mathematical processing. The libraries included are Crypto.Util 

and cryptography to help with RSA process, flask to make the 

dummy server, base64 to do base64 encryption and decryption, 

hashlib to do hash, json to make the JWTs, request to make the 

client dummies, time to calculate the seed for lcg, and datetime 

to calculate the expiration date of the JWT token (because JWT 

can be used once to prevent security breach). Several limitations 

have been incorporated into the implementation to ensure its 

feasibility.  

The limitations are no databases provide in this 

implementation, so all of data is stored locally in the server and 

will be deleted if the program is terminated. The source code of 

the program can be accessed in appendix sections. 

The code is divided into two parts, servers.py, and clients.py. 

servers.py will do the encryption and generating the JWTs, 

storing the user’s data, verifying the JWTs signature from the 

client, and decrypting the credentials stored in the JWTs to login 

into the server. Clients.py will do the request to server, 

registering some data, and login attempt (or to check whether 

the program is successful or not). 

 

A. Servers.py 

This file will do the core algorithm of the proposed hash idea. 

First the servers will generate the private key and public key to 

verify the JWTs, it uses 2048 bits of modulus value (N) and 

static public exponent (e=65537). After generating the private 

key and public key for verifying JWTs, then the program will 

generate the LCG parameters, with a value of 1664525, c value 

of 1013904223, modulus value of 232, and seed value of the 

current time. 

After initiating the RSA and LCG parameters, the next step is 

to generate the salts for the password using e.q. (8). The usage 

of these salts is to make the password is harder to decode, and 

making the hash result is more random. The hashing process of 

the password will be using SHA256 algorithm, and the password 

will be padded with its salts, then the salt data and password will 

also be stored in the server’s database. 

After encrypting the password, server will generate the JWTs, 

the header contains the type (JWT) and the algorithm (RS256), 

the payload contains username, token expiration date, the 

encoded password, and some hashed data, and the last is the 

JWTs signature. The implementation of these scheme can be 

seen below:  



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

 
Fig 3.1 Server – RSA and LCG initiation  

(Source: Writer’s archive) 

 

 
Fig 3.2 Server – User’s credential encryption process  

(Source: Writer’s archive) 

 

 
Fig 3.3 Server – User verification 

(Source: Writer’s archive) 

 



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

 
Fig 3.4 Server – JWTs generator 

(Source: Writer’s archive) 

 

 
Fig 3.5 Server 

(Source: Writer’s archive) 

 

B. Clients.py 

This file will do the core algorithm of the algorithm’s testing. 

First the clients will be registering their credentials to the server, 

so the JWTs can be made. The next step, the clint will login to 

test if they can login with their credentials or not. If the login 

succeeds, they can see their decoded JWTs data that stored in 

the server, but they can’t see their own passwords and hash, so 

the decoded JWTs will be outputted safely. The implementation 

of these scheme can be seen below: 

 
Fig 3.6 Client – Initiation 

(Source: Writer’s archive) 

 

 
Fig 3.7 Client – Register and Login 

(Source: Writer’s archive) 

 



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

 
Fig 3.8 Client – JWTs decrypting process 

(Source: Writer’s archive) 

 

 
Fig 3.9 Client – GUI and JWTs info 

(Source: Writer’s archive) 

 

 
Fig 3.10 Client 

(Source: Writer’s archive) 

 

IV.   RESULT 

Test results are obtained from a series of test cases which 

covers various scenarios that may be the vulnerabilities in JWTs. 

This testing process is carried out for testing the functionality 

and flexibility of the JWTs hashing algorithm. The program 

starts with giving the input form to the users, there are 4 options: 

register, login, see token, and exit. First, users have to register 

their account first to get their JWTs, the program will be asking 

the users for the username and the password, the process can be 

seen below:  



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

 
Fig 4.1 User registration test 

(Source: Writer’s archive) 

 

If registration succeeds, the program will output the 

successful message, but they can’t see their current token, 

because they aren’t logged in yet. 

 
Fig 4.2 No active token in the server 

(Source: Writer’s archive) 

 

To see the JWTs, we have to login first, but in this test, there 

are several testcase. First if the credentials is false, the second is 

if the credentials is true, and the third is if we can use other users 

credentials with our username. For this test case, new users are 

added to the server, named dummy, and the password is 123. 

 

 
Fig 4.3 Invalid user’s credentials 

(Source: Writer’s archive) 

 

 

 
Fig 4.4 Login attempt with other user’s credentials 

(Source: Writer’s archive) 

 

 
Fig 4.5 Successful login attempts 

(Source: Writer’s archive) 

 

If the user’s login is valid, then they can see their JWTs in the 

option 3, there are the header, payload (that contains the encoded 

credentials) and its signature. And for the last test, is to check 

the uniqueness of the generated JWT and the hash, use the 

dummy’s JWT for the comparator to the Nayaka’s JWT. 

 
Fig 4.6 Nayaka’s JWT 

(Source: Writer’s archive) 

 

 

 

 



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

 
Fig 4.7 dummy’s JWT 

(Source: Writer’s archive) 

 

As can be seen in Fig 4.6 and Fig 4.7, the programs are 

successfully encrypting user’s credentials in JWTs. Notice that 

the JWT, the hash, and the signature is uniquely generated so to 

it is quite impossible for a hash collision to occur. If the figure 

provided is not clearly visible, the figure can also be accessed at 

the link in the appendix sections. 

 

V.   CONCLUSION 

With Rivest-Shamir-Adleman and Linear Congruential 

Generator, we can enhance JWTs security. RSA is used to 

generate the signature of the JWTs and generate its private key 

and public key to decode, and Linear Congruential Generator to 

generate salt for the password, so the hashed password will be 

unique and harder to decode. From the results, the generated salt, 

hash, and signature is unique, so it can prevent for hash collision 

to occur. The generated JWTs is also unique, making it an one-

time-usage token, so there are no users can recycle or exploiting 

this token, the token also resets after 1 hour to prevent these 

thing happened. 

This study lays the groundwork for further development. The 

current program developed is exclusively encrypt and decrypt 

small amount of data. Furthermore, the program's limitation to 

the databases can be broadened, allowing for more user’s data 

and its credentials to be hashed. 

 

VI.   APPENDIX 

The program that used in this paper can be seen in this link: 

https://github.com/Nayekah/JWT   

 

VII.   ACKNOWLEDGMENT 

All praise and gratitude belong to the Almighty God, Allah 

Subhanahu wa Ta’ala, for his blessings and grace, enable the 

writer to complete this paper. The writer also giving sincere 

thanks to Ir. Rila Mandala, M.Eng., Ph.D., the lecturer for the 

IF1220 – Discrete Mathematics for his guidance and kindness to 

the writer. And the writer also appreciates for author’s families 

and friends for their motivational support throughout the process 

of finishing this paper. 

 

REFERENCES 

[1] Geeksforgeeks, “Symmetric Key Cryptography”, 

https://www.geeksforgeeks.org/symmetric-key-cryptography/,  2024, 

accessed 6th January 2025, 02.33 UTC+7. 
[2] Geeksforgeeks, “Asymmetric Key Cryptography”, 

https://www.geeksforgeeks.org/asymmetric-key-cryptography/,  2024, 

accessed 6th January 2025, 02.37 UTC+7. 
[3] JaneW, “Cryptosystem Model”, 

https://uwillnvrknow.github.io/deCryptMe/pages/cryptosystem.html , 

2024, accessed 6th January 2025, 02.43 UTC+7. 
[4] M. Rinaldi, “Algoritma RSA”, 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-
2021/Algoritma-RSA-2020.pdf, accessed 6th January 2025, 04.53 UTC+7. 

[5] Geeksforgeeks, “Introduction to Hashing”, 

https://www.geeksforgeeks.org/symmetric-key-cryptography/,  2024, 
accessed 7th January 2025, 16.45 UTC+7. 

[6] Chamblee S., “Difference Between RS256 and HS256 JWT Signing 

Algorithms”, https://community.auth0.com/t/difference-between-rs256-
and-hs256-jwt-signing-algorithms/58609, 2024, accessed 8th January 

2025, 16.29 UTC+7. 

[7] M. Dan, “Components of JWTs Explained”, 
https://fusionauth.io/articles/tokens/jwt-components-explained, 2024, 

accessed 8th January 2025, 16.05 UTC+7. 

[8] M. Rinaldi, “Teori Bilangan (Bagian 3)”, 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/17-

Teori-Bilangan-Bagian3-2024.pdf, 2024, accessed 8th January 2025, 16.58 

UTC+7. 
[9] M. Jones, J. Bradley, N. Sakimakura “JSON Web Token (JWT)”, 

https://www.rfc-editor.org/rfc/rfc7519.html, 2015, accessed 8th January 

2025, 17.26 UTC+7 
 

 

STATEMENT OF ORIGINALITY 

I hereby declare that this paper is my own writing, not an 

adaptation, or translation of someone else's paper, and not 

plagiarized. 

Bandung, 08 January 2025    

 

 
 

 

Nayaka Ghana Subrata 

13523090 

https://github.com/Nayekah/JWT
https://www.geeksforgeeks.org/symmetric-key-cryptography/
https://www.geeksforgeeks.org/asymmetric-key-cryptography/
https://uwillnvrknow.github.io/deCryptMe/pages/cryptosystem.html
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Algoritma-RSA-2020.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Algoritma-RSA-2020.pdf
https://www.geeksforgeeks.org/symmetric-key-cryptography/
https://community.auth0.com/t/difference-between-rs256-and-hs256-jwt-signing-algorithms/58609
https://community.auth0.com/t/difference-between-rs256-and-hs256-jwt-signing-algorithms/58609
https://fusionauth.io/articles/tokens/jwt-components-explained
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/17-Teori-Bilangan-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/17-Teori-Bilangan-Bagian3-2024.pdf
https://www.rfc-editor.org/rfc/rfc7519.html

